SlideShare a Scribd company logo
1.  Crystal Structure Issues that are addressed in this chapter include: Periodic array of atoms Fundamental types of lattices Index system for crystal planes Simple crystal structures Imaging of atomic structure Non-ideal structures
1.1  Periodic Array of Atoms Crystals are composed of a periodic array of atoms: The structure of all crystals can be described in terms of a  lattice , with a group of atoms attached to each lattice point called  basis : basis  +  lattice  =  crystal structure + =
The lattice and the lattice translation vectors  a 1 ,  a 2 , and  a 3  are primitive if any two points satisfy: where u 1 , u 2  and u 3  are integers. The primitive lattice translation vectors specify unit cell of smallest volume. A lattice translation operator is defined as a displacement of a crystal with a crystal translation operator. To describe a crystal, it is necessary to specify three things: What is the lattice What are the lattice translation vectors What is the basis
A  basis  of atoms is attached to a lattice point and each atom in the basis is specified by: where  0    x j , y j , z j     1. The basis consists of one or several atoms. The  primitive cell  is a parallelepiped specified by the primitive translation vectors. It is a  minimum volume cell  and there is  one lattice point  per primitive cell. The volume of the primitive cell is: Basis associated with a primitive cell is called a primitive basis and contains the least # of atoms.
1.2  Fundamental types of lattices To understand the various types of lattices, one has to learn elements of group theory: Point group  consists of symmetry operations in which at least one point remains fixed and unchanged in space.  There are two types of symmetry operations:  proper and improper. Space group  consists of both translational and rotational symmetry operations of a crystal. In here: T  =  group of all translational symmetry opera- tions R =  group of all symmetry operations that involve rotations.
The most common symmetry operations are listed below: C 2   =  two-fold rotation or a rotation by 180 ° C 3   =  three-fold rotation or a rotation by 120 ° C 4   =  four-fold rotation or a rotation by 90 ° C 6   =  six-fold rotation or a rotation by 180 °    = reflection about a plane through a lattice point i  =  inversion, I.e. rotation by 180° that is followed by a reflection in a plane normal to rotation axis. Two-dimensional lattices , invariant under C 3 , C 4   or C 6  rotations are classified into five categories: Oblique lattice Special lattice types   (square, hexagonal, rectangular and   centered rectangular)
Three-dimensional lattices  – the point symmetry operations in 3D lead to 14 distinct types of lattices: The general lattice type is triclinic. The rest of the lattices are grouped based on the type of cells they form. One of the lattices is a cubic lattice, which is further separated into: simple cubic (SC) Face-centered cubic (FCC) Body-centered cubic (BCC) Note that primitive cells by definition contain one lattice point, but the primitive cells of FCC lattice contains 4 atoms and the primitive cell of BCC lattice contains 2 atoms.
The primitive translation vectors for cubic lattices are: simple cubic face-centered cubic body-centered cubic
1.3  Index System for Crystal Planes – Miler Indices The orientation of a crystal plane is determined by three points in the plane that are not collinear to each other. It is more useful to specify the orientation of a plane by the following rules: Find the intercepts of the axes in terms of lattice constants a 1 , a 2  and a 3 . Take a reciprocal of these numbers and then reduce to three integers having the same ratio.  The result ( hkl ) is called the index of a plane. Planes equivalent by summetry are denoted in curly brackets around the indices { hkl }.
Miller indices for direction are specified in the following manner: Set up a vector of arbitrary length in the direction of interest. Decompose the vector into its components along the principal axes. Using an appropriate multiplier, convert the component values into the smallest possible whole number set. [hkl] – square brackets are used to designate specific direction within the crystal. <hkl> - triangular brackets designate an equivalent set of directions.
The calculation of the miller indices using vectors proceeds in the following manner: We are given three points in a plane for which we want to calculate the Miller indices: P 1 (022), P 2 (202) and P 3 (210) We now define the following vectors: r 1 =0 i +2 j +2 k , r 2 =2 i +0 j +2 k , r 3 =2 i + j +0 k and calculate the following differences: r - r 1 =x i  + (2-y) j  + (2-z) k r 2  - r 1 =2 i  - 2 j  + 0 k r 3 -r 1  = 2 i  –  j  - 2 k We then use the fact that: (r-r 1 ) . [(r 2 -r 1 )  × (r 3 -r 1 )] =A . (B ×C) = 0
We now use the following matrix representation, that gives  The end result of this manipulation is an equation of the form: 4x+4y+2z=12 The intercepts are located at: x=3, y=3, z=6 The Miller indices of this plane are then: (221)
The separation between adjacent planes in a cubic crystal is given by: The angle between planes is given by:
1.4  Simple Crystal Structures There are several types of simple crystal structures: Sodium Chloride (NaCl) -> FCC lattice, one Na and one Cl atom separated by one half the body diagonal of a unit cube. Cesium Chloride -> BCC lattice with one atom of opposite type at the body center Hexagonal Closed packed structure (hcp) Diamond structure -> Fcc lattice with primitive basis that has two identical atoms ZnS -> FCC in which the two atoms in the basis are different.
1.5  Imaging of Atomic Structure The direct imaging of lattices is accomplished with TEM.  One can see, for example, the density of atoms along different crystalographic directions.
1.6  Non-ideal Crystal Structures There are two different types of non-idealities in the crystalline structure: Random stacking  – The structure differs in stacking sequence of the planes.  For example FCC has the sequence ABCABC …, and the HCP structure has the sequence ABABAB … . Polytypism – The stacking sequence has long repeat unit along the stacking axis. Examples include ZnS and SiC with more than 45 stacking sequences. The mechanisms that induce such long range order are associated with the presence of spiral steps due to dislocations in the growth nucleus.

More Related Content

PPT
Crystal structure
 
PDF
Basic crystallography
PPT
Structure of Solid Materials
PPT
Unit i-crystal structure
PPTX
Crystal stmmetry
PPT
Crystal Structure
PDF
BT631-14-X-Ray_Crystallography_Crystal_Symmetry
PPTX
Crystal structure
Crystal structure
 
Basic crystallography
Structure of Solid Materials
Unit i-crystal structure
Crystal stmmetry
Crystal Structure
BT631-14-X-Ray_Crystallography_Crystal_Symmetry
Crystal structure

What's hot (20)

PPTX
Crystal Systems
PPTX
Crystal structures in material science
PPT
Bravais lattices
PDF
Crystal and Crystal Systems PowerPoint Presentation
PPTX
Nridul sinha's bravais lattice
PDF
BT631-13-x-ray_crystallography_crystal_symmetry
PPTX
SYMMETRY ELEMENTS AND SYMMETRY OPERATIONS
PPT
PPTX
Crystallography
PPTX
Crystal Structure, BCC ,FCC,HCP
PPTX
Bravais lattices
PPT
PPTX
Crystal Structure
PPT
Crystallography
PPTX
Crystal structures & Packing Fraction
PPT
Copy of solid state fff 2013
PPTX
crystal structures (industrial material )
PPT
Space lattices
 
PPTX
Crystal structure
Crystal Systems
Crystal structures in material science
Bravais lattices
Crystal and Crystal Systems PowerPoint Presentation
Nridul sinha's bravais lattice
BT631-13-x-ray_crystallography_crystal_symmetry
SYMMETRY ELEMENTS AND SYMMETRY OPERATIONS
Crystallography
Crystal Structure, BCC ,FCC,HCP
Bravais lattices
Crystal Structure
Crystallography
Crystal structures & Packing Fraction
Copy of solid state fff 2013
crystal structures (industrial material )
Space lattices
 
Crystal structure
Ad

Similar to Crystal structure (20)

PDF
Solid state physics by Dr. kamal Devlal.pdf
PPTX
Crystal Structurettttgghhfgjhhhhhjjk.pptx
PPT
Crystal Structure123454321ghjklmnbvc.ppt
PDF
Solid state physics unit 1.pdf
PPTX
Crystal Structure_basic introduction.pptx
PPTX
Crystallography SP.pptx
PPTX
X ray diffraction for m.sc. chemistry
PDF
Solid state physics Lec2_Lattice updated till 15_2.pdf
DOC
Crystal structure notes
PPTX
Chapter 1.pptx solid state physics presentation
PDF
Phy351 ch 3
PDF
Phy351 ch 3
PDF
Jif 419 webex 1 2016-2017
PPT
4353486.ppt
PPTX
Physics 460_lecture4.pptx
PPT
Crystalstructure-.ppt
PDF
Materials_Ch3.pdf
PPTX
Engineering Physics - Crystal structure - Dr. Victor Vedanayakam.S
PPTX
Crystallization-------(Pharmaceutics)
PPTX
Crystal Structure
Solid state physics by Dr. kamal Devlal.pdf
Crystal Structurettttgghhfgjhhhhhjjk.pptx
Crystal Structure123454321ghjklmnbvc.ppt
Solid state physics unit 1.pdf
Crystal Structure_basic introduction.pptx
Crystallography SP.pptx
X ray diffraction for m.sc. chemistry
Solid state physics Lec2_Lattice updated till 15_2.pdf
Crystal structure notes
Chapter 1.pptx solid state physics presentation
Phy351 ch 3
Phy351 ch 3
Jif 419 webex 1 2016-2017
4353486.ppt
Physics 460_lecture4.pptx
Crystalstructure-.ppt
Materials_Ch3.pdf
Engineering Physics - Crystal structure - Dr. Victor Vedanayakam.S
Crystallization-------(Pharmaceutics)
Crystal Structure
Ad

More from jo (20)

PPT
Amphiboles
 
PPT
Amphiboles
 
PPT
Amphiboles
 
PPT
Amphiboles
 
PPT
Amphiboles
 
PPT
Nature and behaviour of light
 
PPT
Copy of nature and behaviour of light
 
PPT
Twinning
 
PPT
Rhombohedron
 
PPT
Presentation1
 
DOC
Forms of crystals.
 
PPT
Crystal forms.
 
PPT
Nature and behaviour of light
 
PPT
Feldspar
 
PPT
Silica
 
PPT
Pyroxene
 
PPT
Mica group
 
PPT
Feldspathoids
 
DOC
Forms of crystals.
 
PDF
Pyroxenes pdf
 
Amphiboles
 
Amphiboles
 
Amphiboles
 
Amphiboles
 
Amphiboles
 
Nature and behaviour of light
 
Copy of nature and behaviour of light
 
Twinning
 
Rhombohedron
 
Presentation1
 
Forms of crystals.
 
Crystal forms.
 
Nature and behaviour of light
 
Feldspar
 
Silica
 
Pyroxene
 
Mica group
 
Feldspathoids
 
Forms of crystals.
 
Pyroxenes pdf
 

Crystal structure

  • 1. 1. Crystal Structure Issues that are addressed in this chapter include: Periodic array of atoms Fundamental types of lattices Index system for crystal planes Simple crystal structures Imaging of atomic structure Non-ideal structures
  • 2. 1.1 Periodic Array of Atoms Crystals are composed of a periodic array of atoms: The structure of all crystals can be described in terms of a lattice , with a group of atoms attached to each lattice point called basis : basis + lattice = crystal structure + =
  • 3. The lattice and the lattice translation vectors a 1 , a 2 , and a 3 are primitive if any two points satisfy: where u 1 , u 2 and u 3 are integers. The primitive lattice translation vectors specify unit cell of smallest volume. A lattice translation operator is defined as a displacement of a crystal with a crystal translation operator. To describe a crystal, it is necessary to specify three things: What is the lattice What are the lattice translation vectors What is the basis
  • 4. A basis of atoms is attached to a lattice point and each atom in the basis is specified by: where 0  x j , y j , z j  1. The basis consists of one or several atoms. The primitive cell is a parallelepiped specified by the primitive translation vectors. It is a minimum volume cell and there is one lattice point per primitive cell. The volume of the primitive cell is: Basis associated with a primitive cell is called a primitive basis and contains the least # of atoms.
  • 5. 1.2 Fundamental types of lattices To understand the various types of lattices, one has to learn elements of group theory: Point group consists of symmetry operations in which at least one point remains fixed and unchanged in space. There are two types of symmetry operations: proper and improper. Space group consists of both translational and rotational symmetry operations of a crystal. In here: T = group of all translational symmetry opera- tions R = group of all symmetry operations that involve rotations.
  • 6. The most common symmetry operations are listed below: C 2 = two-fold rotation or a rotation by 180 ° C 3 = three-fold rotation or a rotation by 120 ° C 4 = four-fold rotation or a rotation by 90 ° C 6 = six-fold rotation or a rotation by 180 °  = reflection about a plane through a lattice point i = inversion, I.e. rotation by 180° that is followed by a reflection in a plane normal to rotation axis. Two-dimensional lattices , invariant under C 3 , C 4 or C 6 rotations are classified into five categories: Oblique lattice Special lattice types (square, hexagonal, rectangular and centered rectangular)
  • 7. Three-dimensional lattices – the point symmetry operations in 3D lead to 14 distinct types of lattices: The general lattice type is triclinic. The rest of the lattices are grouped based on the type of cells they form. One of the lattices is a cubic lattice, which is further separated into: simple cubic (SC) Face-centered cubic (FCC) Body-centered cubic (BCC) Note that primitive cells by definition contain one lattice point, but the primitive cells of FCC lattice contains 4 atoms and the primitive cell of BCC lattice contains 2 atoms.
  • 8. The primitive translation vectors for cubic lattices are: simple cubic face-centered cubic body-centered cubic
  • 9. 1.3 Index System for Crystal Planes – Miler Indices The orientation of a crystal plane is determined by three points in the plane that are not collinear to each other. It is more useful to specify the orientation of a plane by the following rules: Find the intercepts of the axes in terms of lattice constants a 1 , a 2 and a 3 . Take a reciprocal of these numbers and then reduce to three integers having the same ratio. The result ( hkl ) is called the index of a plane. Planes equivalent by summetry are denoted in curly brackets around the indices { hkl }.
  • 10. Miller indices for direction are specified in the following manner: Set up a vector of arbitrary length in the direction of interest. Decompose the vector into its components along the principal axes. Using an appropriate multiplier, convert the component values into the smallest possible whole number set. [hkl] – square brackets are used to designate specific direction within the crystal. <hkl> - triangular brackets designate an equivalent set of directions.
  • 11. The calculation of the miller indices using vectors proceeds in the following manner: We are given three points in a plane for which we want to calculate the Miller indices: P 1 (022), P 2 (202) and P 3 (210) We now define the following vectors: r 1 =0 i +2 j +2 k , r 2 =2 i +0 j +2 k , r 3 =2 i + j +0 k and calculate the following differences: r - r 1 =x i + (2-y) j + (2-z) k r 2 - r 1 =2 i - 2 j + 0 k r 3 -r 1 = 2 i – j - 2 k We then use the fact that: (r-r 1 ) . [(r 2 -r 1 ) × (r 3 -r 1 )] =A . (B ×C) = 0
  • 12. We now use the following matrix representation, that gives The end result of this manipulation is an equation of the form: 4x+4y+2z=12 The intercepts are located at: x=3, y=3, z=6 The Miller indices of this plane are then: (221)
  • 13. The separation between adjacent planes in a cubic crystal is given by: The angle between planes is given by:
  • 14. 1.4 Simple Crystal Structures There are several types of simple crystal structures: Sodium Chloride (NaCl) -> FCC lattice, one Na and one Cl atom separated by one half the body diagonal of a unit cube. Cesium Chloride -> BCC lattice with one atom of opposite type at the body center Hexagonal Closed packed structure (hcp) Diamond structure -> Fcc lattice with primitive basis that has two identical atoms ZnS -> FCC in which the two atoms in the basis are different.
  • 15. 1.5 Imaging of Atomic Structure The direct imaging of lattices is accomplished with TEM. One can see, for example, the density of atoms along different crystalographic directions.
  • 16. 1.6 Non-ideal Crystal Structures There are two different types of non-idealities in the crystalline structure: Random stacking – The structure differs in stacking sequence of the planes. For example FCC has the sequence ABCABC …, and the HCP structure has the sequence ABABAB … . Polytypism – The stacking sequence has long repeat unit along the stacking axis. Examples include ZnS and SiC with more than 45 stacking sequences. The mechanisms that induce such long range order are associated with the presence of spiral steps due to dislocations in the growth nucleus.